Well, let's analyze the circuit. We know that the power required in a DC circuit is:
P = Vsrc * Iout
We know that
I = (Vout - Vled)/R
and the power delivered to the LEDs is all that matters, so we want to maximize
Pr = (Vout - Vled) * I = (Vout - Vled)^2/R
Pled = Vled * I = Vled * (Vout - Vled)/R
Clearly, we want to minimize Pr and maximize Pled. We can do this without decreasing the current by reducing R and making Vled close to Vsrc.
This is accomplished by putting the LEDs in series.
However, your battery (isn't the 6LR61 a 9V battery?) will go from some nominal voltage (ex 9V) to a lower voltage - 9Vs are spec'd to be dead at 4.8V. This means that a passive solution will go dim while there's still charge left in the battery. For your original schematic, that might mean that you'd end up below the minimum current to turn the LED on, or for the series version, the voltage might go below the diode forward voltage.
A simple way to extract more brightness with the same power is to pulse the LEDs - Human eyes percieve blinking light to be brighter than continuous light, even if the average power is the same. A 555 timer or other oscillator/switch combination will be able to do this, no microcontroller required. Try playing with the duty cycle and frequency of your LEDs to see where it looks the brightest - You may be surprised!
Also, a switching power supply can increase the efficiency of your regulation circuit to 80, 90, or even 95%. However, that will drive up the cost and complexity of the design, and may not be necessary.
Background:
I have designed a number of LED lighting products which are manufactured in China.
I have several cylindrical LED flashlights that have a large number of LEDs in them
... Are there ultra-bright LEDs that you can drive directly off of 4.5 volts without a current limiting resistor? Or are there special purpose ultra bright white LEDs made for 4.5 volt supply that have internal current limiting resistors?
No and no, unfortunately.
Many LED lights are constructed as you describe, with multiple white LEDs wired in parallel and connected essentially directly across the battery.
They are junk.
They are not "designed".
They build them this way "because they can" and they work well enough to be able to sell them.
When supplied with 4.5V + the LEDs are driven well above their maximum design rating and their lifetimes are greatly shortened. The LEDs used are typically low lifetime low cost devices.
Follow-up question: Does anybody know if the 12 volt LED bulbs that are in landscape lights have a voltage regulator in them?
The 12 volt LED strips usually use 3 LED die in series plus a series resistor.
Turn on / turn off time is liable to be sub `1 microsecond if capacitors are not used downstream of the switch.
Current is set to be "about right" at 12 Volts so will vary substantially if used in an automotive context where several volts of variation occurs. Many strips use individual LEDs but some use 3 die per package LEDs with all 3 independent die wired in series. It is possible but not certain that strips with individual LEDs will run somewhat cooler due to a lower concentration of Energy per package.
Lifetime of these LEDs may be better as the series resistor means that they are somewhat more properly driven. I have seen very substantial variations in output of similarly appearing strips. The brightness bears no obvious relationship to LED specifications and a brighter strip may simply reflect a manufacturers 'marketing decision'. You can get a range of LEDs per metre but current drain and number of LEDs are not directly related.
White LEDs are typically have a voltage drop in the 3.0 - 3.5V range at rated current.
Current increase tends to be exponential with voltage and at 4.5V almost any LED would self destruct almost instantly. The "saving grace" (if it can be called that) is that the combination of small batteries and many LEDs means that the batteries are unable to produce more than 'vastly too much' current when the batteries are new. Any light constructed in this manner demonstrates a total lack of concern and/or knowledge by the manufacturer.
Adding even a single common series resistor makes a substantial improvement in voltage/current profile and a resistor per LED would greatly assist current balancing between LEDs.
Added May 2016
Harper commented:
OP is asking about LED bulbs, not strips. Those are commonly made as screw-in replacements for incandescents. Some have a resistor, but many have a switching buck converter which will accept a range of voltages from 12-30V or higher. The LED series voltage is quite close to 12V actual, so if voltage drops much below 12V the buck converter will go to 100% duty cycle and simply pass the voltage through, causing the LEDs to dim rapidly.
My answer addressed LED strips as I noted, which the OP did not ask about, as Harper noted :-).
Harper's comments above are correct where applicable. I have not seen a bulb with a buck converter internally, but no doubt they exist. White LEDs have Vf typically in the range 2.8V - 3.5V. 2.8V is unusual and usually only seen in reasonably modern LEDs or ones operated well under full power. At 12V nominal, 4 LEDs have 12/4 = 3V each available. Allowing a small voltage drop in connectors and wiring 4 LEDs with Vf of 2.8V to 2.9V would be able to be operated at full power. In real world situations with Vin able to be somewhat below to substantially above 12V, 4 LEDs in series will often work but 3 x LEDs in series plus a series resistor is 'safer'. Bulbs may not match strips in configuration, but all 12V LED strips that I have seen use 3 LEDs in series plus a resistor.
Best Answer
The first thing I would do if I were you is consider using a different power supply. 8xAA batteries is alright, but your LEDs are going to drain them sure quick. You mention the battery capacity is 2650mAh. This means it can power a circuit of 2650mA for 1 hour, or 1325mA for 2 hours etc etc. Your circuit is 1.75A which means assuming perfect batteries and perfect conditions with no loss of power during discharge, you still only get 1.5h of battery life. This seems like a complete waste of 8 batteries. Hence, I would say change your power supply.
If you insist on using these, consider lowering your current. Get some low current LEDs or limit these ones to around 5 or 10mA (if that is bright enough) to lengthen the time your circuit works. You will also be needing a voltage regulator. Your batteries are going to drain, and as the voltage gets lower, your LEDs will dim. You will need a regulator to stabilise the voltage.
Now to tackle making them blink. If you want to use the transistor/capacitor way of doing things, google astable multivibrator circuit. Read up on how they work and understand it before building it.