Electronic – How to determine the settling time from a transfer function

control system

Given the transfer function \$G(s)=\frac{(1-\frac{s}{3})}{(\frac{s}{0.1}+1)(\frac{s}{100}+1)^2}\cdot 10\$, I would like to calculate the settling time.

From what I've learned, this is a third-order system, and the settling time can be calculated as
\$T_{a}=\frac{3}{\zeta\omega_{n}}\$ (the same as a second-order system correct me if I'm wrong), where \$\omega_n\$ is the natural frequency, \$\zeta\$ is the damping factor.

However, there are no imaginary poles and I'm struggling to really understand the fundamentals. What's the "right" intuition/approach?

The relative bode diagram:

enter image description here

Update: I am also looking for solutions that involve simpler calculation than finding the Laplace inverse.

Best Answer

Well, first of all, we must find the steady state value. We can find that using the final value theorem of the Laplace transform:

$$\lim_{t\to\infty}\text{y}\left(t\right)=\lim_{\text{s}\to0}\text{s}\cdot\frac{10}{\text{s}}\cdot\frac{1-\frac{\text{s}}{3}}{\left(1+10\text{s}\right)\left(1+\frac{\text{s}}{100}\right)^2}=10\tag1$$

Now, we can solve for \$\text{n}\text{%}\$ of the steady state value by solving:

$$\mathcal{L}_\text{s}^{-1}\left[\frac{10}{\text{s}}\cdot\frac{1-\frac{\text{s}}{3}}{\left(1+10\text{s}\right)\left(1+\frac{\text{s}}{100}\right)^2}\right]_{\left(t\right)}=\frac{10\text{n}}{100}\space\Longleftrightarrow\space t=\dots\space\left[\text{sec}\right]\tag2$$

Using \$\text{n}=98\text{%}\$, we get:

In[1]:=FullSimplify[
 NSolve[{InverseLaplaceTransform[(1/
        s)*((1 - (s/3))/((10*s + 1)*(1 + (s/100))^2))*(10), s, 
     t] == (10*98)/100, t > 0}, t]]

Out[1]={{t -> 39.4681}}