A 50VA transformer will take about 0.21 Amps when correctly loaded (VA / Input voltage)
So a fuse of about 1.5 x the input is suggested and should be Anti Surge (Usually marked T or TT - T stands for "träge" which is german for Lazy or slow) - so 315mA A/S or 400mA A/S
If your fuses are vaporized and cover insides with remains of the wire - This indicates a major short...
What type of transformer are you using - is it a toroidal - if so have you got a shorted turn (if you mount a toroidal transformer incorrectly you can add an extra winding which is shorted out - this is creates by mounting the transformer with a conductive clamp which is bolted down in the middle - if you are using a toroidal - try removing the clamp...)
It is possible that you have a faulty diode in your bridge - I have seen diodes that measure OK when tested with a meter, but when either loaded, or subjected to a higher voltage, break down and become shorts, or leak - the easiest way to prove is to replace ALL the diodes, as I have found if one is faulty, it usually subjects others in the bridge to stress, which may make them more likely fail, and for the cost of 4 diodes of 1N400X or 1N540X - I usually use 1N4007 or 1N5408...
For Bridge Rectifier selection: Short-list parts that exceed the required maximum voltage, and the required current, by a fair margin, as described below.
For sine wave output from a transformer, the required voltage would be sqrt(2)=1.4142 times the rated transformer output voltage, as transformers are rated for RMS voltage, not peak. Also, transformers are usually, but not always, rated lower than the actual voltage they produce across the secondary with no load: This drops to the rated voltage when the transformer is carrying the rated full load current. Hence, to be on the safe side, around 2.5 times the transformer rated voltage works well for me.
For current calculation as well, 2.5 times the expected load current is healthy - since you would need the bridge to withstand the initial current surge when any reservoir capacitors following the bridge are charging up after power-on.
Now that you have the voltage and current ratings to look for, listing available parts might show you higher rated parts that are cheaper than those just meeting your requirements - so just go with the higher rated parts.
For instance, in local stores near where I live, a BR68 bridge sells for less than half of a BR36, despite the much higher rating. This is due to economies of scale - the BR68 part is just more commonly used here.
Another consideration, though, is physical size / PCB layout: Higher rated bridges tend to increase in size. Also, sometimes SIP pin-put modules are just more convenient on the PCB, compared to square pin-outs, if vertical space is not an issue.
For discrete diode selection: The same calculations apply as for the bridge. The key advantage of going with discrete parts is that heat dissipation is a bit less bothersome, since each diode has its own surrounding space to dissipate heat.
A minor additional benefit is the facility to indulge in somewhat creative PCB layouts when needed, rather than being forced to give up a specific contiguous area on the board.
Best Answer
In general, it is safe to be overly conservative with a component specification. If your design calls for 600V rated diodes, then using diodes rated for 1000V shouldn't hurt anything, all else begin equal.
However, you have only provided information for the voltage rating. If the 1000V diodes can't handle 1A of current, or are insufficient in some other area, you could still have issues.