Update:
Some 10 years later perhaps the best way to test a private method, or any inaccessible member, is via @Jailbreak
from the Manifold framework.
@Jailbreak Foo foo = new Foo();
// Direct, *type-safe* access to *all* foo's members
foo.privateMethod(x, y, z);
foo.privateField = value;
This way your code remains type-safe and readable. No design compromises, no overexposing methods and fields for the sake of tests.
If you have somewhat of a legacy Java application, and you're not allowed to change the visibility of your methods, the best way to test private methods is to use reflection.
Internally we're using helpers to get/set private
and private static
variables as well as invoke private
and private static
methods. The following patterns will let you do pretty much anything related to the private methods and fields. Of course, you can't change private static final
variables through reflection.
Method method = TargetClass.getDeclaredMethod(methodName, argClasses);
method.setAccessible(true);
return method.invoke(targetObject, argObjects);
And for fields:
Field field = TargetClass.getDeclaredField(fieldName);
field.setAccessible(true);
field.set(object, value);
Notes:
1. TargetClass.getDeclaredMethod(methodName, argClasses)
lets you look into private
methods. The same thing applies for
getDeclaredField
.
2. The setAccessible(true)
is required to play around with privates.
Java is always pass-by-value. Unfortunately, when we deal with objects we are really dealing with object-handles called references which are passed-by-value as well. This terminology and semantics easily confuse many beginners.
It goes like this:
public static void main(String[] args) {
Dog aDog = new Dog("Max");
Dog oldDog = aDog;
// we pass the object to foo
foo(aDog);
// aDog variable is still pointing to the "Max" dog when foo(...) returns
aDog.getName().equals("Max"); // true
aDog.getName().equals("Fifi"); // false
aDog == oldDog; // true
}
public static void foo(Dog d) {
d.getName().equals("Max"); // true
// change d inside of foo() to point to a new Dog instance "Fifi"
d = new Dog("Fifi");
d.getName().equals("Fifi"); // true
}
In the example above aDog.getName()
will still return "Max"
. The value aDog
within main
is not changed in the function foo
with the Dog
"Fifi"
as the object reference is passed by value. If it were passed by reference, then the aDog.getName()
in main
would return "Fifi"
after the call to foo
.
Likewise:
public static void main(String[] args) {
Dog aDog = new Dog("Max");
Dog oldDog = aDog;
foo(aDog);
// when foo(...) returns, the name of the dog has been changed to "Fifi"
aDog.getName().equals("Fifi"); // true
// but it is still the same dog:
aDog == oldDog; // true
}
public static void foo(Dog d) {
d.getName().equals("Max"); // true
// this changes the name of d to be "Fifi"
d.setName("Fifi");
}
In the above example, Fifi
is the dog's name after call to foo(aDog)
because the object's name was set inside of foo(...)
. Any operations that foo
performs on d
are such that, for all practical purposes, they are performed on aDog
, but it is not possible to change the value of the variable aDog
itself.
For more information on pass by reference and pass by value, consult the following SO answer: https://stackoverflow.com/a/430958/6005228. This explains more thoroughly the semantics and history behind the two and also explains why Java and many other modern languages appear to do both in certain cases.
Best Answer
You need to pass the parameter in the constructor to the Runnable object:
and invoke it thus: