Assuming you're joining on columns with no duplicates, which is a very common case:
An inner join of A and B gives the result of A intersect B, i.e. the inner part of a Venn diagram intersection.
An outer join of A and B gives the results of A union B, i.e. the outer parts of a Venn diagram union.
Examples
Suppose you have two tables, with a single column each, and data as follows:
A B
- -
1 3
2 4
3 5
4 6
Note that (1,2) are unique to A, (3,4) are common, and (5,6) are unique to B.
Inner join
An inner join using either of the equivalent queries gives the intersection of the two tables, i.e. the two rows they have in common.
select * from a INNER JOIN b on a.a = b.b;
select a.*, b.* from a,b where a.a = b.b;
a | b
--+--
3 | 3
4 | 4
Left outer join
A left outer join will give all rows in A, plus any common rows in B.
select * from a LEFT OUTER JOIN b on a.a = b.b;
select a.*, b.* from a,b where a.a = b.b(+);
a | b
--+-----
1 | null
2 | null
3 | 3
4 | 4
Right outer join
A right outer join will give all rows in B, plus any common rows in A.
select * from a RIGHT OUTER JOIN b on a.a = b.b;
select a.*, b.* from a,b where a.a(+) = b.b;
a | b
-----+----
3 | 3
4 | 4
null | 5
null | 6
Full outer join
A full outer join will give you the union of A and B, i.e. all the rows in A and all the rows in B. If something in A doesn't have a corresponding datum in B, then the B portion is null, and vice versa.
select * from a FULL OUTER JOIN b on a.a = b.b;
a | b
-----+-----
1 | null
2 | null
3 | 3
4 | 4
null | 6
null | 5
There are several differences between HashMap
and Hashtable
in Java:
Hashtable
is synchronized, whereas HashMap
is not. This makes HashMap
better for non-threaded applications, as unsynchronized Objects typically perform better than synchronized ones.
Hashtable
does not allow null
keys or values. HashMap
allows one null
key and any number of null
values.
One of HashMap's subclasses is LinkedHashMap
, so in the event that you'd want predictable iteration order (which is insertion order by default), you could easily swap out the HashMap
for a LinkedHashMap
. This wouldn't be as easy if you were using Hashtable
.
Since synchronization is not an issue for you, I'd recommend HashMap
. If synchronization becomes an issue, you may also look at ConcurrentHashMap
.
Best Answer
In this two queries, you are using JOIN to query all employees that have at least one department associated.
But, the difference is: in the first query you are returning only the Employes for the Hibernate. In the second query, you are returning the Employes and all Departments associated.
So, if you use the second query, you will not need to do a new query to hit the database again to see the Departments of each Employee.
You can use the second query when you are sure that you will need the Department of each Employee. If you not need the Department, use the first query.
I recomend read this link if you need to apply some WHERE condition (what you probably will need): How to properly express JPQL "join fetch" with "where" clause as JPA 2 CriteriaQuery?
Update
If you don't use
fetch
and the Departments continue to be returned, is because your mapping between Employee and Department (a@OneToMany
) are setted withFetchType.EAGER
. In this case, any HQL (withfetch
or not) query withFROM Employee
will bring all Departments. Remember that all mapping *ToOne (@ManyToOne
and@OneToOne
) are EAGER by default.