Electronic – bldc motor, esc and battery draw, nominal vs peak

brushless-dc-motorcurrentmotor controller

I want to better understand how Electronic Speed Controllers (ESC) work for BLDC motors. Specifically, I am trying to understand battery current draw.

Question 1:
When an ESC is rated at 200 amps nominal and 500 amps peak is it safe to assume that the draw on the battery pack will not exceed 200 amps? I'm rationalizing this in my head by assuming the capacitors in the ESC are just discharging more current than normal for short durations when this 'peak' value is experienced. I'm also assuming it will never try to pull 500 amps from the battery pack. If this isn't right, please explain.

Question 2:
If the motor is run indefinitely at max throttle (theoretically) will the ESC draw 200 amps from the battery continuously or less than that? I'm now thinking the draw will be more along the RMS value of the output pulse wave. This would explain why the ESC input wires from the battery pack are relatively small in relation to the output current rating. When I see 200 amps I think of thick 2/0 awg gauge wire, not the 6 awg or 8 awg gauge wires I see on my ESC.

Question 3: (slightly off topic)
To modulate motor speed does the ESC restrict current flow or voltage? I assume it is current, I just want verification. Let's say the throttle is at 10% and assume the throttle curve is linear. I just want to understand the theory of how ESC's work at a high level.

Much thanks!

Best Answer

Question 1: When an ESC is rated at 200 amps nominal and 500 amps peak is it safe to assume that the draw on the battery pack will not exceed 200 amps? I'm rationalizing this in my head by assuming the capacitors in the ESC are just discharging more current than normal for short durations when this 'peak' value is experienced. I'm also assuming it will never try to pull 500 amps from the battery pack. If this isn't right, please explain.

Without a datasheet we're guessing but the 500 A peak current is likely to occur during start-up and this may last one or more tenths of a second. A capacitor to supply 500 A for 0.1 s at a useful voltage will be very large.

It's much more likely that any capacitors on the DC input stage are acting as short-term filters to pass high-frequency noise to ground.

Question 2: If the motor is run indefinitely at max throttle (theoretically) will the ESC draw 200 amps from the battery continuously or less than that?

It will need to draw enough to power the motor. It completely depends on the load the motor is given.

This would explain why the ESC input wires from the battery pack are relatively small in relation to the output current rating. When I see 200 amps I think of thick 2/0 awg gauge wire, not the 6 awg or 8 awg gauge wires I see on my ESC.

This may be a warning sign that you have a low quality product.

Question 3: (slightly off topic) To modulate motor speed does the ESC restrict current flow or voltage? I assume it is current, I just want verification. Let's say the throttle is at 10% and assume the throttle curve is linear.

The ESC will operate using pulse-width modulation (PWM) as it results in very low losses in the switching transistors. PWM applies pulses of 100% voltage to the motor for a short period, switches off, waits and then repeats the process.

enter image description here

Figure 1. PWM signal transitioning from high pulse width (75%) to low (25%) and back again. Note amplitude remains constant.