Electronic – Calculate Inverse Discrete Time Fourier Transform

fouriersignal processing

Calculate Inverse Discrete Time Fourier Transform of the following where \$|a| < 1\$:

$$
X(e^{j\omega}) = \frac{1-a^2}{(1-ae^{-j\omega})(1-ae^{j\omega})}
$$

Plugging this directly into the IDTFT equation, I get:

\begin{align*}
x[n] &= \frac{1}{2\pi} \int_{-\pi}^\pi X(e^{j\omega}) e^{j \omega n} d\omega \\
x[n] &= \frac{1}{2\pi} \int_{-\pi}^\pi
\frac{(1-a^2)e^{j \omega n}}{(1-ae^{-j\omega})(1-ae^{j\omega})} d\omega \\
\end{align*}

I am having trouble getting started. I'm not sure what to try. None of the standard Fourier Transform property laws seem to directly apply to this.

(This is problem 2.57 from Oppenheim textbook on Discrete Time Signal Processing)

Best Answer

We need to play a bit with the layout of the expression. We have:

$$ F=\frac{(1+a)(1-a)}{(1-ae^{\ jw})(1-ae^{\ -jw})} =\frac{(1+a)}{(1-ae^{\ -jw})}\frac{(1-a)}{(1-ae^{\ jw})} $$

We can rewrite it as:

$$ =\left( \frac{1}{(1-ae^{\ -jw})}+\frac{a}{(1-ae^{\ -jw})}\right) \left( \frac{1}{(1-ae^{\ jw})}-\frac{a}{(1-ae^{\ jw})}\right) \\ $$

We factor out a \$-ae^{\ jw}\$ from the right-most terms and do the inverse transform:

$$ = \left( \frac{1}{(1-ae^{\ -jw})}+a\frac{1}{(1-ae^{\ -jw})}\right) \left( -\frac{1}{a}\frac{e^{\ -jw}}{(1-\frac{1}{a}e^{\ -jw})}+\frac{e^{\ -jw}}{(1-\frac{1}{a}e^{\ -jw})}\right) \\ \implies \left( a^nu[n]+a(a^nu[n]) \right) * \left( -\tfrac{1}{a}({\tfrac{1}{a}}^nu[n-1])+({\tfrac{1}{a}}^nu[n-1]) \right) $$

Finally, cleaning up:

$$ = \left( a^nu[n](1+a) \right) * \left (\tfrac{1}{a}^{n-1}u[n-1](1-\tfrac{1}{a}) \right) $$

Sorry if it is too messy. Fourier tends to be a lot of writing. Tell me where you think I may have made an error or isn't clear! If someone finds a mistake, please let me know.