Electronic – Opamp gain calculation

circuit analysisgainoperational-amplifier

May be a very basic question, I am a chemical engineer with limited electronics knowledge.

The circuit is a potentiostat with the current source \$I\$ being a sensor electrode.

I was looking for a way to calculate output of stage 2 as a function of \$I\$. I was wondering what kind of opamp configuration the first stage has? What is the best approach to solve this?

enter image description here

Best Answer

Well, let's solve and show this mathematically. We are trying to analyze the following circuit (assuming an ideal opamp):

schematic

simulate this circuit – Schematic created using CircuitLab

When we use and apply KCL, we can write the following set of equations:

$$ \begin{cases} \text{I}_{13}=\text{I}_1+\text{I}_2\\ \\ \text{I}_{13}=\text{I}_3+\text{I}_4\\ \\ \text{I}_5=\text{I}_{13}+\text{I}_{11}\\ \\ \text{I}_5=\text{I}_6\\ \\ \text{I}_7=\text{I}_9\\ \\ \text{I}_{10}=\text{I}_8+\text{I}_9 \end{cases}\tag1 $$

When we use and apply Ohm's law, we can write the following set of equations:

$$ \begin{cases} \text{I}_2=\frac{\text{V}_\text{c}-\text{V}_1}{\text{R}_2}\\ \\ \text{I}_3=\frac{\text{V}_1-\text{V}_2}{\text{R}_3}\\ \\ \text{I}_4=\frac{\text{V}_1-\text{V}_2}{\text{R}_4}\\ \\ \text{I}_5=\frac{\text{V}_2-\text{V}_3}{\text{R}_5}\\ \\ \text{I}_6=\frac{\text{V}_3}{\text{R}_6}\\ \\ \text{I}_7=\frac{\text{V}_\text{d}-\text{V}_4}{\text{R}_7}\\ \\ \text{I}_8=\frac{\text{V}_5-\text{V}_6}{\text{R}_8}\\ \\ \text{I}_9=\frac{\text{V}_4-\text{V}_6}{\text{R}_9}\\ \\ \text{I}_{10}=\frac{\text{V}_6}{\text{R}_{10}} \end{cases}\tag2 $$

Now, when we have an ideal opamp we know that \$\text{V}_\text{k}:=\text{V}_{+_1}=\text{V}_{-_1}=\text{V}_1=\text{V}_\text{a}\$ and \$\text{V}_\text{n}:=\text{V}_{+_2}=\text{V}_{-_2}=\text{V}_3=\text{V}_4\$.


Now, applying this to your circuit we need to use (from now on I use the lower case letters for the function in the 'complex' s-domain where I used Laplace transform) the fact that the resistor \$\text{R}_3\$ is replaced by a capacitor, so:

$$\text{R}_3=\frac{1}{\text{sC}}\tag6$$

Solving your question using Mathematica, gives:

In[1]:=Vk = (26/10)/s;
I1 = 1/s;
Vc = 2/s;
Vd = (26/10)/s;
R1 = 47;
R2 = 10^6;
R3 = 1/(s*c);
R4 = 147;
R5 = 200000;
R6 = 10^6;
R7 = 180000;
R8 = 100;
R9 = 10^6;
R10 = 22000;
c = 220*10^(-9);
FullSimplify[
 Solve[{I13 == I1 + I2, I13 == I3 + I4, I5 == I11 + I13, I5 == I6, 
   I7 == I9, I10 == I8 + I9, I1 == (V7 - Vk)/R1, I2 == (Vc - Vk)/R2, 
   I3 == (Vk - V2)/R3, I4 == (Vk - V2)/R4, I5 == (V2 - Vn)/R5, 
   I6 == (Vn)/R6, I7 == (Vd - Vn)/R7, I8 == (V5 - V6)/R8, 
   I9 == (Vn - V6)/R9, I10 == (V6)/R10}, {I2, I3, I4, I5, I6, I7, I8, 
   I9, I10, I11, I13, V2, Vn, V5, V6, V7}]]

Out[1]={{I2 -> -(3/(5000000 s)), 
  I3 -> 8084995149/(5000000 (50000000 + 1617 s)), 
  I4 -> 49999970/(s (50000000 + 1617 s)), 
  I5 -> (-36099977950 + 21021 s)/(6000000 s (50000000 + 1617 s)), 
  I6 -> (-36099977950 + 21021 s)/(6000000 s (50000000 + 1617 s)), 
  I7 -> (184399889750 + 21021 s)/(5400000 s (50000000 + 1617 s)), 
  I8 -> -((110473333739750 + 1282281 s)/(
    59400000 s (50000000 + 1617 s))), 
  I9 -> (184399889750 + 21021 s)/(5400000 s (50000000 + 1617 s)), 
  I10 -> -((2168898699050 + 21021 s)/(1188000 s (50000000 + 1617 s))),
   I11 -> -((1500179599889750 + 48509865789 s)/(
    30000000 s (50000000 + 1617 s))), I13 -> 4999997/(5000000 s), 
  V2 -> -((36099977950 - 21021 s)/(250000000 s + 8085 s^2)), 
  Vn -> -((36099977950 - 21021 s)/(300000000 s + 9702 s^2)), 
  V5 -> -((2663151002587750 + 25834809 s)/(
    66000 s (50000000 + 1617 s))), 
  V6 -> -((2168898699050 + 21021 s)/(2700000000 s + 87318 s^2)), 
  V7 -> 248/(5 s)}}

Which means, for the voltage \$\text{V}_6\$:

V6 -> -((2168898699050 + 21021 s)/(2700000000 s + 87318 s^2))

Which gives:

enter image description here