Electronic – Single-phase to 3-phase conversion

acconversioninduction motorsingle-phasethree phase

I have seen some boxes (with some capacitor circuits inside) which do single-phase power supply to 3-phase power supply conversion. The problem with them is that they cause the load motor to heat up, because the phase difference between the legs is 90 degrees instead of 120 degrees.

Is it possible to design a circuit that produces the third phase with exact 120 degree phase difference using only the original single phase?

Is it possible to use the available phase legs equally to produce the third phase, so that loading on a single phase is avoided?

How would this circuit look?

Note:
The motors in question are 3.7 kW-5.6 kW induction motors.

Best Answer

I'm understanding this question to mean that you're trying to run a three-phase motor off a single-phase line. If you're trying to run the motor directly off the AC line, the phase angles involved will make it difficult to get the motor started, which is part of the reason three-phase exists in the first place. Single-phase motors usually have motor start caps for just that reason. That sounds like what you're describing.

The simple answer to your question is that to get three-phase AC from single-phase AC, you need to rectify the single-phase AC line into DC, then run the DC back through an inverter to get controlled three-phase AC. There are other electronic approaches, but they're less common in my (limited) experience. There are also mechanical approaches, which may be more convenient if you have the parts.

I'd suggest using a drive to operate your three-phase motor. Typical variable-frequency three-phase drives are exactly what I described above: a rectifier, followed by an inverter. I can't speak as to what's on the market in a given power class, but larger three-phase drives typically have terminals for the three-phase AC line input, the DC bus, and the three-phase motor output. If you have those terminals, you have two options.

One is to run single-phase AC through the three-phase input of the drive. If the voltages are correct, the drive should operate fine. The caveat is that you'll have to derate the drive somewhat. The input diodes are spec'd assuming that the drive's constant-power load will be distributed among three legs of the rectifier. If you distribute that same load over just two legs, those diodes will get hotter. The internal bus capacitors will also get hotter, because they'll see more ripple current without the third phase. Check with the drive manufacturer for the derating info.

If your drive has DC bus terminals, your other option is to skip it's internal rectifier and use an external one. Rectify the single-phase AC, then use that DC as the input to the drive. This will let you avoid derating the drive. My company makes something exactly for that purpose, though its power range may be larger than is cost-effective for your application. You'd have to price both options out to find out for sure. Read this for more details.