Electronic – What should the resistor wattage be to run a LED on 240VAC

resistors

I'm looking for a sanity check on my figures here because I'm concerned my resistor wattage is unrealistic.

I would like to run a red LED on a 240 VAC line. I have found that the forward voltage for a red LED is 2V and a max current of 20mA.

To calculate the resistance I used ohm's law and set a target of 18mA:

R = V / I

R = (240VAC – 2V) / 0.018A

R = 13222 ohms or about 13.2k ohms

What about the wattage? This is a high voltage after all…

W = V * V / R

W = (240VAC – 2V)^2 / 13222 ohms

W = 4.28

Does this seem right? Do I really need close to a 5W resistor to handle this?


Thanks everyone for the help. I think the big message here is that there is a much better way of doing this than dumping the extra power as heat from resistors and that the reverse voltage needs to be considered when dealing with the LED.

EM Fields thank you for posting such a detailed explanation of the options along with a diagram. Thanks to uint128_t who had a good comment about 240VAC being the RMS value and provided the equation to calculate the 340V peak.

Using a capacitive reactance method (shown in diagram c of EM Fields answer), which I had never heard of, is a better way to approach this type of circuit. I know that several of you have mentioned it which was very helpful. Thank you Dwayne Reid, Evan, and anyone else I missed.

For anyone else who is new to this like me then I found these additional resources to be helpful:

Best Answer

You'll need to keep the reverse voltage to the LED at less than about 5 volts, and an easy way to do that is to connect a diode in parallel opposition to the LED across the LED.

Using resistive dropping, there are a couple of ways to do that.

In (b), below, the flicker rate will be twice that of (a), which may be advantageous in some applications.

enter image description here

In (c), below, a full wave bridge is used instead of a parallel diode, the flicker rate will be twice the mains frequency, and (d) is an example of a reactive dropper where the capacitive reactance of C1 is used to drop the mains voltage more or less losslessly to a voltage which the LED can use.

V5 and S1 are used to generate a turn-on transient at the first peak of V4, for test purposes, and the LTspice circuit list is appended just in case you want to play with the circuit(s)

enter image description here

Version 4
SHEET 1 1172 680
WIRE -432 192 -480 192
WIRE -272 192 -352 192
WIRE -96 192 -272 192
WIRE 128 192 32 192
WIRE 256 192 208 192
WIRE 336 192 320 192
WIRE 480 192 416 192
WIRE 528 192 480 192
WIRE 672 192 608 192
WIRE 848 192 672 192
WIRE -272 224 -272 192
WIRE -96 224 -96 192
WIRE 672 224 672 192
WIRE 848 224 848 192
WIRE 480 256 480 192
WIRE -480 288 -480 192
WIRE 32 288 32 192
WIRE 144 288 144 240
WIRE -272 320 -272 288
WIRE -224 320 -272 320
WIRE -96 320 -96 288
WIRE -96 320 -160 320
WIRE 672 320 672 288
WIRE 720 320 672 320
WIRE 848 320 848 288
WIRE 848 320 784 320
WIRE -272 352 -272 320
WIRE -96 352 -96 320
WIRE 480 352 480 320
WIRE 672 352 672 320
WIRE 848 352 848 320
WIRE -480 464 -480 368
WIRE -432 464 -480 464
WIRE -272 464 -272 416
WIRE -272 464 -352 464
WIRE -96 464 -96 416
WIRE -96 464 -272 464
WIRE 32 464 32 368
WIRE 144 464 144 368
WIRE 144 464 32 464
WIRE 192 464 192 240
WIRE 192 464 144 464
WIRE 480 464 480 416
WIRE 480 464 192 464
WIRE 672 464 672 416
WIRE 672 464 480 464
WIRE 848 464 848 416
WIRE 848 464 672 464
WIRE -480 512 -480 464
WIRE 32 560 32 464
FLAG -480 512 0
FLAG 32 560 0
SYMBOL res -336 176 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R5
SYMATTR Value 9100
SYMBOL res -336 448 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R6
SYMATTR Value 9100
SYMBOL voltage -480 272 R0
WINDOW 3 24 96 Invisible 2
WINDOW 123 0 0 Left 2
WINDOW 39 0 0 Left 2
SYMATTR InstName V3
SYMATTR Value SINE(0 340 50)
SYMBOL LED -224 336 R270
WINDOW 0 24 66 VTop 2
WINDOW 3 0 32 VBottom 2
SYMATTR InstName D6
SYMATTR Value NSCW100
SYMBOL diode -256 224 M0
WINDOW 0 46 33 Left 2
SYMATTR InstName D5
SYMATTR Value 1N4148
SYMBOL diode -256 416 R180
WINDOW 0 48 31 Left 2
WINDOW 3 24 0 Left 2
SYMATTR InstName D7
SYMATTR Value 1N4148
SYMBOL diode -80 288 R180
WINDOW 0 43 31 Left 2
WINDOW 3 21 64 Left 2
SYMATTR InstName D9
SYMATTR Value 1N4148
SYMBOL diode -112 352 R0
WINDOW 0 -53 34 Left 2
WINDOW 3 -51 71 Left 2
SYMATTR InstName D10
SYMATTR Value 1N4148
SYMBOL res 624 176 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R7
SYMATTR Value 100
SYMBOL voltage 32 272 R0
WINDOW 0 4 6 Left 2
WINDOW 3 24 96 Invisible 2
WINDOW 123 0 0 Left 2
WINDOW 39 0 0 Left 2
SYMATTR InstName V4
SYMATTR Value SINE(0 340 50 0 0)
SYMBOL LED 720 336 R270
WINDOW 0 72 32 VTop 2
WINDOW 3 0 32 VBottom 2
SYMATTR InstName D8
SYMATTR Value NSCW100
SYMBOL diode 688 224 M0
WINDOW 0 42 33 Left 2
SYMATTR InstName D11
SYMATTR Value 1N4148
SYMBOL diode 688 416 R180
WINDOW 0 -52 32 Left 2
WINDOW 3 -78 -3 Left 2
SYMATTR InstName D12
SYMATTR Value 1N4148
SYMBOL diode 864 288 R180
WINDOW 0 -53 33 Left 2
WINDOW 3 -76 -2 Left 2
SYMATTR InstName D13
SYMATTR Value 1N4148
SYMBOL diode 832 352 R0
WINDOW 0 39 33 Left 2
SYMATTR InstName D14
SYMATTR Value 1N4148
SYMBOL cap 320 176 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C1
SYMATTR Value 180n
SYMBOL sw 224 192 M270
SYMATTR InstName S1
SYMBOL voltage 144 272 R0
WINDOW 0 -42 3 Left 2
WINDOW 3 24 96 Invisible 2
WINDOW 123 0 0 Left 2
WINDOW 39 0 0 Left 2
SYMATTR InstName V5
SYMATTR Value PULSE(0 1 5m)
SYMBOL zener 464 256 R0
WINDOW 0 -52 33 Left 2
WINDOW 3 -92 69 Left 2
SYMATTR InstName D16
SYMATTR Value KDZ6_2B
SYMBOL zener 496 416 R180
WINDOW 0 46 31 Left 2
WINDOW 3 24 0 Left 2
SYMATTR InstName D15
SYMATTR Value KDZ6_2B
SYMBOL res 432 176 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R8
SYMATTR Value 510
TEXT 46 492 Left 2 !.tran 100m
TEXT -408 248 Left 2 ;5W
TEXT -416 520 Left 2 ;5W
TEXT 48 520 Left 2 !.model SW SW(Ron=.01 Roff=1G Vt=0.5Vh=0)
TEXT -280 568 Left 3 ;(c)
TEXT 488 576 Left 3 ;(d)
Related Topic