The correct way to avoid SQL injection attacks, no matter which database you use, is to separate the data from SQL, so that data stays data and will never be interpreted as commands by the SQL parser. It is possible to create SQL statement with correctly formatted data parts, but if you don't fully understand the details, you should always use prepared statements and parameterized queries. These are SQL statements that are sent to and parsed by the database server separately from any parameters. This way it is impossible for an attacker to inject malicious SQL.
You basically have two options to achieve this:
Using PDO (for any supported database driver):
$stmt = $pdo->prepare('SELECT * FROM employees WHERE name = :name');
$stmt->execute([ 'name' => $name ]);
foreach ($stmt as $row) {
// Do something with $row
}
Using MySQLi (for MySQL):
$stmt = $dbConnection->prepare('SELECT * FROM employees WHERE name = ?');
$stmt->bind_param('s', $name); // 's' specifies the variable type => 'string'
$stmt->execute();
$result = $stmt->get_result();
while ($row = $result->fetch_assoc()) {
// Do something with $row
}
If you're connecting to a database other than MySQL, there is a driver-specific second option that you can refer to (for example, pg_prepare()
and pg_execute()
for PostgreSQL). PDO is the universal option.
Correctly setting up the connection
Note that when using PDO to access a MySQL database real prepared statements are not used by default. To fix this you have to disable the emulation of prepared statements. An example of creating a connection using PDO is:
$dbConnection = new PDO('mysql:dbname=dbtest;host=127.0.0.1;charset=utf8', 'user', 'password');
$dbConnection->setAttribute(PDO::ATTR_EMULATE_PREPARES, false);
$dbConnection->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
In the above example the error mode isn't strictly necessary, but it is advised to add it. This way the script will not stop with a Fatal Error
when something goes wrong. And it gives the developer the chance to catch
any error(s) which are throw
n as PDOException
s.
What is mandatory, however, is the first setAttribute()
line, which tells PDO to disable emulated prepared statements and use real prepared statements. This makes sure the statement and the values aren't parsed by PHP before sending it to the MySQL server (giving a possible attacker no chance to inject malicious SQL).
Although you can set the charset
in the options of the constructor, it's important to note that 'older' versions of PHP (before 5.3.6) silently ignored the charset parameter in the DSN.
Explanation
The SQL statement you pass to prepare
is parsed and compiled by the database server. By specifying parameters (either a ?
or a named parameter like :name
in the example above) you tell the database engine where you want to filter on. Then when you call execute
, the prepared statement is combined with the parameter values you specify.
The important thing here is that the parameter values are combined with the compiled statement, not an SQL string. SQL injection works by tricking the script into including malicious strings when it creates SQL to send to the database. So by sending the actual SQL separately from the parameters, you limit the risk of ending up with something you didn't intend.
Any parameters you send when using a prepared statement will just be treated as strings (although the database engine may do some optimization so parameters may end up as numbers too, of course). In the example above, if the $name
variable contains 'Sarah'; DELETE FROM employees
the result would simply be a search for the string "'Sarah'; DELETE FROM employees"
, and you will not end up with an empty table.
Another benefit of using prepared statements is that if you execute the same statement many times in the same session it will only be parsed and compiled once, giving you some speed gains.
Oh, and since you asked about how to do it for an insert, here's an example (using PDO):
$preparedStatement = $db->prepare('INSERT INTO table (column) VALUES (:column)');
$preparedStatement->execute([ 'column' => $unsafeValue ]);
Can prepared statements be used for dynamic queries?
While you can still use prepared statements for the query parameters, the structure of the dynamic query itself cannot be parametrized and certain query features cannot be parametrized.
For these specific scenarios, the best thing to do is use a whitelist filter that restricts the possible values.
// Value whitelist
// $dir can only be 'DESC', otherwise it will be 'ASC'
if (empty($dir) || $dir !== 'DESC') {
$dir = 'ASC';
}
DISCLAIMER: This answer was written in 2008.
Since then, PHP has given us password_hash
and password_verify
and, since their introduction, they are the recommended password hashing & checking method.
The theory of the answer is still a good read though.
TL;DR
Don'ts
- Don't limit what characters users can enter for passwords. Only idiots do this.
- Don't limit the length of a password. If your users want a sentence with supercalifragilisticexpialidocious in it, don't prevent them from using it.
- Don't strip or escape HTML and special characters in the password.
- Never store your user's password in plain-text.
- Never email a password to your user except when they have lost theirs, and you sent a temporary one.
- Never, ever log passwords in any manner.
- Never hash passwords with SHA1 or MD5 or even SHA256! Modern crackers can exceed 60 and 180 billion hashes/second (respectively).
- Don't mix bcrypt and with the raw output of hash(), either use hex output or base64_encode it. (This applies to any input that may have a rogue
\0
in it, which can seriously weaken security.)
Dos
- Use scrypt when you can; bcrypt if you cannot.
- Use PBKDF2 if you cannot use either bcrypt or scrypt, with SHA2 hashes.
- Reset everyone's passwords when the database is compromised.
- Implement a reasonable 8-10 character minimum length, plus require at least 1 upper case letter, 1 lower case letter, a number, and a symbol. This will improve the entropy of the password, in turn making it harder to crack. (See the "What makes a good password?" section for some debate.)
Why hash passwords anyway?
The objective behind hashing passwords is simple: preventing malicious access to user accounts by compromising the database. So the goal of password hashing is to deter a hacker or cracker by costing them too much time or money to calculate the plain-text passwords. And time/cost are the best deterrents in your arsenal.
Another reason that you want a good, robust hash on a user accounts is to give you enough time to change all the passwords in the system. If your database is compromised you will need enough time to at least lock the system down, if not change every password in the database.
Jeremiah Grossman, CTO of Whitehat Security, stated on White Hat Security blog after a recent password recovery that required brute-force breaking of his password protection:
Interestingly, in living out this nightmare, I learned A LOT I didn’t know about password cracking, storage, and complexity. I’ve come to appreciate why password storage is ever so much more important than password complexity. If you don’t know how your password is stored, then all you really can depend upon is complexity. This might be common knowledge to password and crypto pros, but for the average InfoSec or Web Security expert, I highly doubt it.
(Emphasis mine.)
What makes a good password anyway?
Entropy. (Not that I fully subscribe to Randall's viewpoint.)
In short, entropy is how much variation is within the password. When a password is only lowercase roman letters, that's only 26 characters. That isn't much variation. Alpha-numeric passwords are better, with 36 characters. But allowing upper and lower case, with symbols, is roughly 96 characters. That's a lot better than just letters. One problem is, to make our passwords memorable we insert patterns—which reduces entropy. Oops!
Password entropy is approximated easily. Using the full range of ascii characters (roughly 96 typeable characters) yields an entropy of 6.6 per character, which at 8 characters for a password is still too low (52.679 bits of entropy) for future security. But the good news is: longer passwords, and passwords with unicode characters, really increase the entropy of a password and make it harder to crack.
There's a longer discussion of password entropy on the Crypto StackExchange site. A good Google search will also turn up a lot of results.
In the comments I talked with @popnoodles, who pointed out that enforcing a password policy of X length with X many letters, numbers, symbols, etc, can actually reduce entropy by making the password scheme more predictable. I do agree. Randomess, as truly random as possible, is always the safest but least memorable solution.
So far as I've been able to tell, making the world's best password is a Catch-22. Either its not memorable, too predictable, too short, too many unicode characters (hard to type on a Windows/Mobile device), too long, etc. No password is truly good enough for our purposes, so we must protect them as though they were in Fort Knox.
Best practices
Bcrypt and scrypt are the current best practices. Scrypt will be better than bcrypt in time, but it hasn't seen adoption as a standard by Linux/Unix or by webservers, and hasn't had in-depth reviews of its algorithm posted yet. But still, the future of the algorithm does look promising. If you are working with Ruby there is an scrypt gem that will help you out, and Node.js now has its own scrypt package. You can use Scrypt in PHP either via the Scrypt extension or the Libsodium extension (both are available in PECL).
I highly suggest reading the documentation for the crypt function if you want to understand how to use bcrypt, or finding yourself a good wrapper or use something like PHPASS for a more legacy implementation. I recommend a minimum of 12 rounds of bcrypt, if not 15 to 18.
I changed my mind about using bcrypt when I learned that bcrypt only uses blowfish's key schedule, with a variable cost mechanism. The latter lets you increase the cost to brute-force a password by increasing blowfish's already expensive key schedule.
Average practices
I almost can't imagine this situation anymore. PHPASS supports PHP 3.0.18 through 5.3, so it is usable on almost every installation imaginable—and should be used if you don't know for certain that your environment supports bcrypt.
But suppose that you cannot use bcrypt or PHPASS at all. What then?
Try an implementation of PDKBF2 with the maximum number of rounds that your environment/application/user-perception can tolerate. The lowest number I'd recommend is 2500 rounds. Also, make sure to use hash_hmac() if it is available to make the operation harder to reproduce.
Future Practices
Coming in PHP 5.5 is a full password protection library that abstracts away any pains of working with bcrypt. While most of us are stuck with PHP 5.2 and 5.3 in most common environments, especially shared hosts, @ircmaxell has built a compatibility layer for the coming API that is backward compatible to PHP 5.3.7.
Cryptography Recap & Disclaimer
The computational power required to actually crack a hashed password doesn't exist. The only way for computers to "crack" a password is to recreate it and simulate the hashing algorithm used to secure it. The speed of the hash is linearly related to its ability to be brute-forced. Worse still, most hash algorithms can be easily parallelized to perform even faster. This is why costly schemes like bcrypt and scrypt are so important.
You cannot possibly foresee all threats or avenues of attack, and so you must make your best effort to protect your users up front. If you do not, then you might even miss the fact that you were attacked until it's too late... and you're liable. To avoid that situation, act paranoid to begin with. Attack your own software (internally) and attempt to steal user credentials, or modify other user's accounts or access their data. If you don't test the security of your system, then you cannot blame anyone but yourself.
Lastly: I am not a cryptographer. Whatever I've said is my opinion, but I happen to think it's based on good ol' common sense ... and lots of reading. Remember, be as paranoid as possible, make things as hard to intrude as possible, and then, if you are still worried, contact a white-hat hacker or cryptographer to see what they say about your code/system.
Best Answer
bcrypt
is a hashing algorithm which is scalable with hardware (via a configurable number of rounds). Its slowness and multiple rounds ensures that an attacker must deploy massive funds and hardware to be able to crack your passwords. Add to that per-password salts (bcrypt
REQUIRES salts) and you can be sure that an attack is virtually unfeasible without either ludicrous amount of funds or hardware.bcrypt
uses the Eksblowfish algorithm to hash passwords. While the encryption phase of Eksblowfish and Blowfish are exactly the same, the key schedule phase of Eksblowfish ensures that any subsequent state depends on both salt and key (user password), and no state can be precomputed without the knowledge of both. Because of this key difference,bcrypt
is a one-way hashing algorithm. You cannot retrieve the plain text password without already knowing the salt, rounds and key (password). [Source]How to use bcrypt:
Using PHP >= 5.5-DEV
Password hashing functions have now been built directly into PHP >= 5.5. You may now use
password_hash()
to create abcrypt
hash of any password:To verify a user provided password against an existing hash, you may use the
password_verify()
as such:Using PHP >= 5.3.7, < 5.5-DEV (also RedHat PHP >= 5.3.3)
There is a compatibility library on GitHub created based on the source code of the above functions originally written in C, which provides the same functionality. Once the compatibility library is installed, usage is the same as above (minus the shorthand array notation if you are still on the 5.3.x branch).
Using PHP < 5.3.7 (DEPRECATED)
You can use
crypt()
function to generate bcrypt hashes of input strings. This class can automatically generate salts and verify existing hashes against an input. If you are using a version of PHP higher or equal to 5.3.7, it is highly recommended you use the built-in function or the compat library. This alternative is provided only for historical purposes.You can use this code like this:
Alternatively, you may also use the Portable PHP Hashing Framework.