What is the difference between a function decorated with @staticmethod
and one decorated with @classmethod
?
Python – Difference between staticmethod and classmethod
methodsooppythonpython-decorators
Related Solutions
How can I merge two Python dictionaries in a single expression?
For dictionaries x
and y
, z
becomes a shallowly-merged dictionary with values from y
replacing those from x
.
In Python 3.9.0 or greater (released 17 October 2020): PEP-584, discussed here, was implemented and provides the simplest method:
z = x | y # NOTE: 3.9+ ONLY
In Python 3.5 or greater:
z = {**x, **y}
In Python 2, (or 3.4 or lower) write a function:
def merge_two_dicts(x, y): z = x.copy() # start with keys and values of x z.update(y) # modifies z with keys and values of y return z
and now:
z = merge_two_dicts(x, y)
Explanation
Say you have two dictionaries and you want to merge them into a new dictionary without altering the original dictionaries:
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
The desired result is to get a new dictionary (z
) with the values merged, and the second dictionary's values overwriting those from the first.
>>> z
{'a': 1, 'b': 3, 'c': 4}
A new syntax for this, proposed in PEP 448 and available as of Python 3.5, is
z = {**x, **y}
And it is indeed a single expression.
Note that we can merge in with literal notation as well:
z = {**x, 'foo': 1, 'bar': 2, **y}
and now:
>>> z
{'a': 1, 'b': 3, 'foo': 1, 'bar': 2, 'c': 4}
It is now showing as implemented in the release schedule for 3.5, PEP 478, and it has now made its way into the What's New in Python 3.5 document.
However, since many organizations are still on Python 2, you may wish to do this in a backward-compatible way. The classically Pythonic way, available in Python 2 and Python 3.0-3.4, is to do this as a two-step process:
z = x.copy()
z.update(y) # which returns None since it mutates z
In both approaches, y
will come second and its values will replace x
's values, thus b
will point to 3
in our final result.
Not yet on Python 3.5, but want a single expression
If you are not yet on Python 3.5 or need to write backward-compatible code, and you want this in a single expression, the most performant while the correct approach is to put it in a function:
def merge_two_dicts(x, y):
"""Given two dictionaries, merge them into a new dict as a shallow copy."""
z = x.copy()
z.update(y)
return z
and then you have a single expression:
z = merge_two_dicts(x, y)
You can also make a function to merge an arbitrary number of dictionaries, from zero to a very large number:
def merge_dicts(*dict_args):
"""
Given any number of dictionaries, shallow copy and merge into a new dict,
precedence goes to key-value pairs in latter dictionaries.
"""
result = {}
for dictionary in dict_args:
result.update(dictionary)
return result
This function will work in Python 2 and 3 for all dictionaries. e.g. given dictionaries a
to g
:
z = merge_dicts(a, b, c, d, e, f, g)
and key-value pairs in g
will take precedence over dictionaries a
to f
, and so on.
Critiques of Other Answers
Don't use what you see in the formerly accepted answer:
z = dict(x.items() + y.items())
In Python 2, you create two lists in memory for each dict, create a third list in memory with length equal to the length of the first two put together, and then discard all three lists to create the dict. In Python 3, this will fail because you're adding two dict_items
objects together, not two lists -
>>> c = dict(a.items() + b.items())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'dict_items' and 'dict_items'
and you would have to explicitly create them as lists, e.g. z = dict(list(x.items()) + list(y.items()))
. This is a waste of resources and computation power.
Similarly, taking the union of items()
in Python 3 (viewitems()
in Python 2.7) will also fail when values are unhashable objects (like lists, for example). Even if your values are hashable, since sets are semantically unordered, the behavior is undefined in regards to precedence. So don't do this:
>>> c = dict(a.items() | b.items())
This example demonstrates what happens when values are unhashable:
>>> x = {'a': []}
>>> y = {'b': []}
>>> dict(x.items() | y.items())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
Here's an example where y
should have precedence, but instead the value from x
is retained due to the arbitrary order of sets:
>>> x = {'a': 2}
>>> y = {'a': 1}
>>> dict(x.items() | y.items())
{'a': 2}
Another hack you should not use:
z = dict(x, **y)
This uses the dict
constructor and is very fast and memory-efficient (even slightly more so than our two-step process) but unless you know precisely what is happening here (that is, the second dict is being passed as keyword arguments to the dict constructor), it's difficult to read, it's not the intended usage, and so it is not Pythonic.
Here's an example of the usage being remediated in django.
Dictionaries are intended to take hashable keys (e.g. frozenset
s or tuples), but this method fails in Python 3 when keys are not strings.
>>> c = dict(a, **b)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings
From the mailing list, Guido van Rossum, the creator of the language, wrote:
I am fine with declaring dict({}, **{1:3}) illegal, since after all it is abuse of the ** mechanism.
and
Apparently dict(x, **y) is going around as "cool hack" for "call x.update(y) and return x". Personally, I find it more despicable than cool.
It is my understanding (as well as the understanding of the creator of the language) that the intended usage for dict(**y)
is for creating dictionaries for readability purposes, e.g.:
dict(a=1, b=10, c=11)
instead of
{'a': 1, 'b': 10, 'c': 11}
Response to comments
Despite what Guido says,
dict(x, **y)
is in line with the dict specification, which btw. works for both Python 2 and 3. The fact that this only works for string keys is a direct consequence of how keyword parameters work and not a short-coming of dict. Nor is using the ** operator in this place an abuse of the mechanism, in fact, ** was designed precisely to pass dictionaries as keywords.
Again, it doesn't work for 3 when keys are not strings. The implicit calling contract is that namespaces take ordinary dictionaries, while users must only pass keyword arguments that are strings. All other callables enforced it. dict
broke this consistency in Python 2:
>>> foo(**{('a', 'b'): None})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: foo() keywords must be strings
>>> dict(**{('a', 'b'): None})
{('a', 'b'): None}
This inconsistency was bad given other implementations of Python (PyPy, Jython, IronPython). Thus it was fixed in Python 3, as this usage could be a breaking change.
I submit to you that it is malicious incompetence to intentionally write code that only works in one version of a language or that only works given certain arbitrary constraints.
More comments:
dict(x.items() + y.items())
is still the most readable solution for Python 2. Readability counts.
My response: merge_two_dicts(x, y)
actually seems much clearer to me, if we're actually concerned about readability. And it is not forward compatible, as Python 2 is increasingly deprecated.
{**x, **y}
does not seem to handle nested dictionaries. the contents of nested keys are simply overwritten, not merged [...] I ended up being burnt by these answers that do not merge recursively and I was surprised no one mentioned it. In my interpretation of the word "merging" these answers describe "updating one dict with another", and not merging.
Yes. I must refer you back to the question, which is asking for a shallow merge of two dictionaries, with the first's values being overwritten by the second's - in a single expression.
Assuming two dictionaries of dictionaries, one might recursively merge them in a single function, but you should be careful not to modify the dictionaries from either source, and the surest way to avoid that is to make a copy when assigning values. As keys must be hashable and are usually therefore immutable, it is pointless to copy them:
from copy import deepcopy
def dict_of_dicts_merge(x, y):
z = {}
overlapping_keys = x.keys() & y.keys()
for key in overlapping_keys:
z[key] = dict_of_dicts_merge(x[key], y[key])
for key in x.keys() - overlapping_keys:
z[key] = deepcopy(x[key])
for key in y.keys() - overlapping_keys:
z[key] = deepcopy(y[key])
return z
Usage:
>>> x = {'a':{1:{}}, 'b': {2:{}}}
>>> y = {'b':{10:{}}, 'c': {11:{}}}
>>> dict_of_dicts_merge(x, y)
{'b': {2: {}, 10: {}}, 'a': {1: {}}, 'c': {11: {}}}
Coming up with contingencies for other value types is far beyond the scope of this question, so I will point you at my answer to the canonical question on a "Dictionaries of dictionaries merge".
Less Performant But Correct Ad-hocs
These approaches are less performant, but they will provide correct behavior.
They will be much less performant than copy
and update
or the new unpacking because they iterate through each key-value pair at a higher level of abstraction, but they do respect the order of precedence (latter dictionaries have precedence)
You can also chain the dictionaries manually inside a dict comprehension:
{k: v for d in dicts for k, v in d.items()} # iteritems in Python 2.7
or in Python 2.6 (and perhaps as early as 2.4 when generator expressions were introduced):
dict((k, v) for d in dicts for k, v in d.items()) # iteritems in Python 2
itertools.chain
will chain the iterators over the key-value pairs in the correct order:
from itertools import chain
z = dict(chain(x.items(), y.items())) # iteritems in Python 2
Performance Analysis
I'm only going to do the performance analysis of the usages known to behave correctly. (Self-contained so you can copy and paste yourself.)
from timeit import repeat
from itertools import chain
x = dict.fromkeys('abcdefg')
y = dict.fromkeys('efghijk')
def merge_two_dicts(x, y):
z = x.copy()
z.update(y)
return z
min(repeat(lambda: {**x, **y}))
min(repeat(lambda: merge_two_dicts(x, y)))
min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
min(repeat(lambda: dict(chain(x.items(), y.items()))))
min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))
In Python 3.8.1, NixOS:
>>> min(repeat(lambda: {**x, **y}))
1.0804965235292912
>>> min(repeat(lambda: merge_two_dicts(x, y)))
1.636518670246005
>>> min(repeat(lambda: {k: v for d in (x, y) for k, v in d.items()}))
3.1779992282390594
>>> min(repeat(lambda: dict(chain(x.items(), y.items()))))
2.740647904574871
>>> min(repeat(lambda: dict(item for d in (x, y) for item in d.items())))
4.266070580109954
$ uname -a
Linux nixos 4.19.113 #1-NixOS SMP Wed Mar 25 07:06:15 UTC 2020 x86_64 GNU/Linux
Resources on Dictionaries
- My explanation of Python's dictionary implementation, updated for 3.6.
- Answer on how to add new keys to a dictionary
- Mapping two lists into a dictionary
- The official Python docs on dictionaries
- The Dictionary Even Mightier - talk by Brandon Rhodes at Pycon 2017
- Modern Python Dictionaries, A Confluence of Great Ideas - talk by Raymond Hettinger at Pycon 2017
Short Answer
Use
$this
to refer to the current object. Useself
to refer to the current class. In other words, use$this->member
for non-static members, useself::$member
for static members.
Full Answer
Here is an example of correct usage of $this
and self
for non-static and static member variables:
<?php
class X {
private $non_static_member = 1;
private static $static_member = 2;
function __construct() {
echo $this->non_static_member . ' '
. self::$static_member;
}
}
new X();
?>
Here is an example of incorrect usage of $this
and self
for non-static and static member variables:
<?php
class X {
private $non_static_member = 1;
private static $static_member = 2;
function __construct() {
echo self::$non_static_member . ' '
. $this->static_member;
}
}
new X();
?>
Here is an example of polymorphism with $this
for member functions:
<?php
class X {
function foo() {
echo 'X::foo()';
}
function bar() {
$this->foo();
}
}
class Y extends X {
function foo() {
echo 'Y::foo()';
}
}
$x = new Y();
$x->bar();
?>
Here is an example of suppressing polymorphic behaviour by using self
for member functions:
<?php
class X {
function foo() {
echo 'X::foo()';
}
function bar() {
self::foo();
}
}
class Y extends X {
function foo() {
echo 'Y::foo()';
}
}
$x = new Y();
$x->bar();
?>
The idea is that
$this->foo()
calls thefoo()
member function of whatever is the exact type of the current object. If the object is oftype X
, it thus callsX::foo()
. If the object is oftype Y
, it callsY::foo()
. But with self::foo(),X::foo()
is always called.
From http://www.phpbuilder.com/board/showthread.php?t=10354489:
Related Topic
- Python – What does the “yield” keyword do
- Python – the difference between Python’s list methods append and extend
- The difference between an abstract method and a virtual method
- Python – How to make function decorators and chain them together
- Python – the difference between __str__ and __repr__
- The difference between an interface and abstract class
Best Answer
Maybe a bit of example code will help: Notice the difference in the call signatures of
foo
,class_foo
andstatic_foo
:Below is the usual way an object instance calls a method. The object instance,
a
, is implicitly passed as the first argument.With classmethods, the class of the object instance is implicitly passed as the first argument instead of
self
.You can also call
class_foo
using the class. In fact, if you define something to be a classmethod, it is probably because you intend to call it from the class rather than from a class instance.A.foo(1)
would have raised a TypeError, butA.class_foo(1)
works just fine:One use people have found for class methods is to create inheritable alternative constructors.
With staticmethods, neither
self
(the object instance) norcls
(the class) is implicitly passed as the first argument. They behave like plain functions except that you can call them from an instance or the class:Staticmethods are used to group functions which have some logical connection with a class to the class.
foo
is just a function, but when you calla.foo
you don't just get the function, you get a "partially applied" version of the function with the object instancea
bound as the first argument to the function.foo
expects 2 arguments, whilea.foo
only expects 1 argument.a
is bound tofoo
. That is what is meant by the term "bound" below:With
a.class_foo
,a
is not bound toclass_foo
, rather the classA
is bound toclass_foo
.Here, with a staticmethod, even though it is a method,
a.static_foo
just returns a good 'ole function with no arguments bound.static_foo
expects 1 argument, anda.static_foo
expects 1 argument too.And of course the same thing happens when you call
static_foo
with the classA
instead.