#!/usr/bin/env bash
SCRIPT_DIR="$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )"
is a useful one-liner which will give you the full directory name of the script no matter where it is being called from.
It will work as long as the last component of the path used to find the script is not a symlink (directory links are OK). If you also want to resolve any links to the script itself, you need a multi-line solution:
#!/usr/bin/env bash
SOURCE="${BASH_SOURCE[0]}"
while [ -h "$SOURCE" ]; do # resolve $SOURCE until the file is no longer a symlink
DIR="$( cd -P "$( dirname "$SOURCE" )" >/dev/null 2>&1 && pwd )"
SOURCE="$(readlink "$SOURCE")"
[[ $SOURCE != /* ]] && SOURCE="$DIR/$SOURCE" # if $SOURCE was a relative symlink, we need to resolve it relative to the path where the symlink file was located
done
DIR="$( cd -P "$( dirname "$SOURCE" )" >/dev/null 2>&1 && pwd )"
This last one will work with any combination of aliases, source
, bash -c
, symlinks, etc.
Beware: if you cd
to a different directory before running this snippet, the result may be incorrect!
Also, watch out for $CDPATH
gotchas, and stderr output side effects if the user has smartly overridden cd to redirect output to stderr instead (including escape sequences, such as when calling update_terminal_cwd >&2
on Mac). Adding >/dev/null 2>&1
at the end of your cd
command will take care of both possibilities.
To understand how it works, try running this more verbose form:
#!/usr/bin/env bash
SOURCE="${BASH_SOURCE[0]}"
while [ -h "$SOURCE" ]; do # resolve $SOURCE until the file is no longer a symlink
TARGET="$(readlink "$SOURCE")"
if [[ $TARGET == /* ]]; then
echo "SOURCE '$SOURCE' is an absolute symlink to '$TARGET'"
SOURCE="$TARGET"
else
DIR="$( dirname "$SOURCE" )"
echo "SOURCE '$SOURCE' is a relative symlink to '$TARGET' (relative to '$DIR')"
SOURCE="$DIR/$TARGET" # if $SOURCE was a relative symlink, we need to resolve it relative to the path where the symlink file was located
fi
done
echo "SOURCE is '$SOURCE'"
RDIR="$( dirname "$SOURCE" )"
DIR="$( cd -P "$( dirname "$SOURCE" )" >/dev/null 2>&1 && pwd )"
if [ "$DIR" != "$RDIR" ]; then
echo "DIR '$RDIR' resolves to '$DIR'"
fi
echo "DIR is '$DIR'"
And it will print something like:
SOURCE './scriptdir.sh' is a relative symlink to 'sym2/scriptdir.sh' (relative to '.')
SOURCE is './sym2/scriptdir.sh'
DIR './sym2' resolves to '/home/ubuntu/dotfiles/fo fo/real/real1/real2'
DIR is '/home/ubuntu/dotfiles/fo fo/real/real1/real2'
If the reason you're checking is so you can do something like if file_exists: open_it()
, it's safer to use a try
around the attempt to open it. Checking and then opening risks the file being deleted or moved or something between when you check and when you try to open it.
If you're not planning to open the file immediately, you can use os.path.isfile
Return True
if path is an existing regular file. This follows symbolic links, so both islink() and isfile() can be true for the same path.
import os.path
os.path.isfile(fname)
if you need to be sure it's a file.
Starting with Python 3.4, the pathlib
module offers an object-oriented approach (backported to pathlib2
in Python 2.7):
from pathlib import Path
my_file = Path("/path/to/file")
if my_file.is_file():
# file exists
To check a directory, do:
if my_file.is_dir():
# directory exists
To check whether a Path
object exists independently of whether is it a file or directory, use exists()
:
if my_file.exists():
# path exists
You can also use resolve(strict=True)
in a try
block:
try:
my_abs_path = my_file.resolve(strict=True)
except FileNotFoundError:
# doesn't exist
else:
# exists
Best Answer
os.remove()
removes a file.os.rmdir()
removes an empty directory.shutil.rmtree()
deletes a directory and all its contents.Path
objects from the Python 3.4+pathlib
module also expose these instance methods:pathlib.Path.unlink()
removes a file or symbolic link.pathlib.Path.rmdir()
removes an empty directory.