Python – PIL Best Way To Replace Color

colorsimagepythonpython-imaging-libraryreplace

I am trying to remove a certain color from my image however it's not working as well as I'd hoped. I tried to do the same thing as seen here Using PIL to make all white pixels transparent? however the image quality is a bit lossy so it leaves a little ghost of odd colored pixels around where what was removed. I tried doing something like change pixel if all three values are below 100 but because the image was poor quality the surrounding pixels weren't even black.

Does anyone know of a better way with PIL in Python to replace a color and anything surrounding it? This is probably the only sure fire way I can think of to remove the objects completely however I can't think of a way to do this.

The picture has a white background and text that is black. Let's just say I want to remove the text entirely from the image without leaving any artifacts behind.

Would really appreciate someone's help! Thanks

Best Answer

The best way to do it is to use the "color to alpha" algorithm used in Gimp to replace a color. It will work perfectly in your case. I reimplemented this algorithm using PIL for an open source python photo processor phatch. You can find the full implementation here. This a pure PIL implementation and it doesn't have other dependences. You can copy the function code and use it. Here is a sample using Gimp:

alt text to alt text

You can apply the color_to_alpha function on the image using black as the color. Then paste the image on a different background color to do the replacement.

By the way, this implementation uses the ImageMath module in PIL. It is much more efficient than accessing pixels using getdata.

EDIT: Here is the full code:

from PIL import Image, ImageMath

def difference1(source, color):
    """When source is bigger than color"""
    return (source - color) / (255.0 - color)

def difference2(source, color):
    """When color is bigger than source"""
    return (color - source) / color


def color_to_alpha(image, color=None):
    image = image.convert('RGBA')
    width, height = image.size

    color = map(float, color)
    img_bands = [band.convert("F") for band in image.split()]

    # Find the maximum difference rate between source and color. I had to use two
    # difference functions because ImageMath.eval only evaluates the expression
    # once.
    alpha = ImageMath.eval(
        """float(
            max(
                max(
                    max(
                        difference1(red_band, cred_band),
                        difference1(green_band, cgreen_band)
                    ),
                    difference1(blue_band, cblue_band)
                ),
                max(
                    max(
                        difference2(red_band, cred_band),
                        difference2(green_band, cgreen_band)
                    ),
                    difference2(blue_band, cblue_band)
                )
            )
        )""",
        difference1=difference1,
        difference2=difference2,
        red_band = img_bands[0],
        green_band = img_bands[1],
        blue_band = img_bands[2],
        cred_band = color[0],
        cgreen_band = color[1],
        cblue_band = color[2]
    )

    # Calculate the new image colors after the removal of the selected color
    new_bands = [
        ImageMath.eval(
            "convert((image - color) / alpha + color, 'L')",
            image = img_bands[i],
            color = color[i],
            alpha = alpha
        )
        for i in xrange(3)
    ]

    # Add the new alpha band
    new_bands.append(ImageMath.eval(
        "convert(alpha_band * alpha, 'L')",
        alpha = alpha,
        alpha_band = img_bands[3]
    ))

    return Image.merge('RGBA', new_bands)

image = color_to_alpha(image, (0, 0, 0, 255))
background = Image.new('RGB', image.size, (255, 255, 255))
background.paste(image.convert('RGB'), mask=image)