R – Time Stamp counter (TSC) when switching between Kernel & User mode

kernellinux

I am wondering if somebody knows some more details about the time stamp counter in Linux when a context switch occurs? Until now I had the opinion, that the TSC value is just increasing by 1 during each clock cycle, independent if in kernel or in user mode. I measured now the performance of an application using the TSC which yielded a performance result of 5 Mio Clock Cyles. Then, I made some changes to the scheduler which means that a context switch takes considerably longer, i.g. 2 Mio cycles instead of 500.000 cycles. The funny bit is, that when measuring the performance of the original application again it still takes 5 Mio cycles… So I am wondering why it did not take considerably longer as a context switch takes now almost 2 Mio clock cyles more? (and there occur at least 3 context during execution of the application).

Is the time stamp counter somehow deactivated during kernel mode? Or is the content of the TSC saved during contest switches? Thanks if someone could point me out what could be the problem!

Best Answer

As you can read on Wikipedia

With the advent of multi-core/hyperthreaded CPUs, systems with multiple CPUs, and "hibernating" operating systems, the TSC cannot be relied on to provide accurate results. The issue has two components: rate of tick and whether all cores (processors) have identical values in their time-keeping registers. There is no promise that the timestamp counters of multiple CPUs on a single motherboard will be synchronized. In such cases, programmers can only get reliable results by locking their code to a single CPU. Even then, the CPU speed may change due to power-saving measures taken by the OS or BIOS, or the system may be hibernated and later resumed (resetting the time stamp counter). Reliance on the time stamp counter also reduces portability, as other processors may not have a similar feature. Recent Intel processors include a constant rate TSC (identified by the constant_tsc flag in Linux's /proc/cpuinfo). With these processors the TSC reads at the processor's maximum rate regardless of the actual CPU running rate. While this makes time keeping more consistent, it can skew benchmarks, where a certain amount of spin-up time is spent at a lower clock rate before the OS switches the processor to the higher rate. This has the effect of making things seem like they require more processor cycles than they normally would.