Electrical – Voltage Divider Equation with Load on output

potentiometervoltage divider

I know how to calculate the resistance values for a voltage divider without a load on Vout.

I would like to know how I would like to calculate the resistance values of a pot (Example 500kΩ pot) used as voltage divider with a load on it.

With No Load

$$
Vo = V_i*\frac{R_2}{R_1+R_2}
$$
Is this the correct equation to use? With a load across Vout and 0V
$$
Vo = V_i*\frac{\frac{R_2*R_L}{R_2+R_L}}{R_1+\frac{R_2*R_L}{R_2+R_L}}
$$

If
$$
V_o=10V
$$
$$
V_i=12.2V
$$
$$
R_L=150,000Ω
$$
$$
R_1+\frac{R_2*R_L}{R_2+R_L}=500,000Ω
$$

Then
$$
10 = 12.2*\frac{\frac{R_2*150,000}{R_2+150,000}}{R_1+\frac{R_2*150,000}{R_2+150,000}}
$$

I input all of this in to Wolfram Alpha here and I get $$R_1=90163.9$$$$ R_2= -236593$$

How can $$R_2$$ be negative? Does that mean that it is not possible to get my desired out put with a 500kΩ pot?

ETA:
$$
10 = 12.2*\frac{\frac{R_2*150,000}{R_2+150,000}}{500000}
$$
$$
R_2 = -236593.059936909
$$

schematic

simulate this circuit – Schematic created using CircuitLab

Best Answer

This is your combined potentiometer+resistor schematic:

schematic

simulate this circuit – Schematic created using CircuitLab

Here above, we know that \$R_{1_X}+R_{1_Y} = R_1\$. Let's define a new variable, \$0 \le x\le 1\$, that determines the percent of rotation of the potentiometer, such that \$R_{1_X} = x R_1\$ and \$R_{1_Y} = \left(1-x\right) R_1\$.

Suppose there were three resistors meeting in the middle, each with a different voltage source at the other end, then the equation for the voltage in the central node would be:

$$\begin{align*} V &= \frac{V_1 R_2 R_3+V_2 R_1 R_3+V_3 R_1 R_2}{R_1 R_2+R_1 R_3+R_2 R_3} \end{align*}$$

From the above, plugging in the voltage nodes from the schematic above, the combination of these three resistors yield:

$$\begin{align*} V_C &= \frac{V_B R_{1_X} R_2+V_AR_{1_Y}R_2+V_BR_{1_X}R_{1_Y}}{R_{1_X} R_2+R_{1_Y}R_2+R_{1_X}R_{1_Y}}\\\\ &= \frac{V_B x R_1 R_2+V_A \left(1-x\right) R_1 R_2+V_B x R_1 \left(1-x\right) R_1}{x R_1 R_2+\left(1-x\right) R_1 R_2+x R_1 \left(1-x\right) R_1}\\\\ &= \frac{R_1 V_B\left(x-x^2\right)+R_2\left(\left[1-x\right]V_A+x V_B\right)}{R_1\left(x-x^2\right)+R_2}\\\\ R_{A-B} &= x R_1 + \frac{\left[1-x\right]R_1 R_2}{\left[1-x\right]R_1 + R_2} \end{align*}$$

Above, \$R_{A-B}\$ is the resistance from terminal \$A\$ to terminal \$B\$, with terminal \$C\$ open (unconnected.) The value for \$V_C\$ above is also with terminal \$C\$ open, of course.

There are other useful simplifications. For example, if you know that \$V_B=0\:\textrm{V}\$, then:

$$\begin{align*} V_C &= V_A\frac{1-x}{1+\frac{R_1}{R_2}x\left[1-x\right]} \end{align*}$$