Signal – Euler’s Relation and Energy of Complex Exponential Signal

mathsignal

I'm having a little hard time understanding the equation:

enter image description here

Why Euler's relation's square is equal to 1?

I know how to write Euler's equation in terms of sin and cos:

enter image description here

But when I do the math, the square of this equality is nothing but 1. I can't get rid of from the sin and cos in the equation:
$$(e^{jwt})^2 = cos^2(jwt)+2jcos(jwt)sin(jwt)+j^2sin^2(jwt)$$

$$= cos^2(jwt)-sin^2(jwt)+2jcos(jwt)sin(jwt)$$

I'm probably missing something with the Euler's relation here so I would like to hear what am I missing.

Best Answer

Notice, that \$\forall x\in\mathbb{R}\$:

$$\left|\exp\left(xi\right)\right|=1\tag1$$

Because:

$$\left|\exp\left(xi\right)\right|=\left|\cos\left(x\right)+\sin\left(x\right)i\right|=\sqrt{\underbrace{\cos^2\left(x\right)+\sin^2\left(x\right)}_{=\space 1}}=\sqrt{1}=1\tag2$$

So, for your integral we get:

$$\int_0^{\text{T}_0}\left|\exp\left(\omega_0t\text{j}\right)\right|^2\space\text{d}t=\int_0^{\text{T}_0}\left|\cos\left(\omega_0t\right)+\sin\left(\omega_0t\right)\text{j}\right|^2\space\text{d}t=$$ $$\int_0^{\text{T}_0}\left(\sqrt{\underbrace{\cos^2\left(\omega_0t\right)+\sin^2\left(\omega_0t\right)}_{=\space1}}\right)^2\space\text{d}t=\int_0^{\text{T}_0}\underbrace{\left(\sqrt{1}\right)^2}_{=\space1}\space\text{d}t=$$ $$\int_0^{\text{T}_0}1\space\text{d}t=\left[t\right]_0^{\text{T}_0}=\text{T}_0-0=\text{T}_0\tag3$$