Electronic – Is the frequency response of a circuit only valid for steady state (phasors)

frequency responsegainphasorsteady statetransfer function

This is my first post. I just finished a course about advanced circuit analysis techniques (the content was taken from textbooks by Sadiku, Hayt and Irwin.) As you know, phasors are used to solve sinusoidal AC circuits (and also non-sinusoidal AC circuits, with the help of Fourier series), however, the answer you get from analyzing a circuit with that technique is only the steady state response, not the complete response (which also includes the transient response). When we're introduced to the frequency response analysis, the only difference is that now frequency is an independent variable just like time, and we still solve the circuits with phasors.

So my question is this: is the answer obtained by a frequency analysis (output voltage, ratio of output to input voltage, transfer function, etc.) only valid for steady state? I'm assuming this because in freq. anal. we still use phasors, which give only the s.s. response.

Best Answer

Yes, it assumes the transients have decayed to zero.

But note that the frequency response contains information on the transients, this is why it's so useful. It's a steady state measurement that gives transient information, so filtering etc can take place in a steady state environment which, potentially, gives more accurate results.

Furthermore, SS frequency response can detect transients that may not even be visible on, say, a step response.