Electronic – over and critically damped systems settling time

controlcontrol systemdamping-factorstep responsetransfer function

I know that for second order systems the settling time(St) equation is:

formula

So my question is, should this same formula be used when the system is over or critically damped? Is it right to use it in that cases?

Best Answer

TL;DR: NO, you can't use the underdamped settling time formula to find out the settling time of an overdamped system. And you can't use it for a critically damped system either.

LONG FORM answer follows...


Critically damped case

For the critically damped case (\$\zeta=1\$), the step response is:

$$ v_{out}(t) = H_0 u(t) \lbrack 1 - (1+\omega_0 t) e^{-\omega_0 t} \rbrack $$

If we define the settling time \$T_s\$ using the same "within 2% of final response" criteria, then:

$$ 0.02 = (1+\omega_0 T_s) e^{-\omega_0 T_s}\\ $$

Solving numerically for \$\omega_0 T_s\$ (by simply using Excel's solver) we obtain:

$$ T_s \approx \frac{5.8335}{\omega_0} $$


Overdamped case

For the overdamped case (\$\zeta>1\$), the step response is:

$$ v_{out}(t) = H_0 u(t) \left[ 1 - \frac{s_2}{s_2-s_1}e^{s_1 t} - \frac{s_1}{s_1-s_2}e^{s_2 t} \right] $$

where \$s_1, s_2\$ are the real roots of the transfer function denominator:

$$ s_1 = -\zeta \omega_0 + \omega_0 \sqrt{\zeta^2-1} \\ s_2 = -\zeta \omega_0 - \omega_0 \sqrt{\zeta^2-1} $$

For convenience we define:

$$ \begin{align} \Delta &= \frac{s_2-s_1}{2} = - \omega_0 \sqrt{\zeta^2-1} \\ \Sigma &= \frac{s_1+s_2}{2} = - \zeta \omega_0 \\ K &= \frac{\Sigma}{\Delta} = \frac{\zeta}{\sqrt{\zeta^2-1}} \end{align} $$

So that:

$$ \begin{align} s_1 &= \Sigma-\Delta \\ s_2 &= \Sigma+\Delta \end{align} $$

If we define the settling time \$T_s\$ using the same "within 2% of final response" criteria, then:

$$ \begin{align} 0.02 &= \frac{s_2}{s_2-s_1} e^{s_1 T_s} + \frac{s_1}{s_1-s_2} e^{s_2 T_s} = \\ &= \frac{\Sigma + \Delta}{2 \Delta} e^{(\Sigma - \Delta) T_s} - \frac{\Sigma - \Delta}{2 \Delta} e^{(\Sigma + \Delta) T_s} = \\ &= \frac{e^{\Sigma T_s}}{\Delta} \left[ \frac{\Sigma+\Delta}{2} e^{-\Delta T_s} - \frac{\Sigma-\Delta}{2} e^{\Delta T_s} \right] = \\ &= \frac{e^{\Sigma T_s}}{\Delta} \left[ \frac{\Delta}{2} \left( e^{\Delta T_s} + e^{-\Delta T_s} \right) - \frac{\Sigma}{2} \left( e^{\Delta T_s} - e^{-\Delta T_s} \right) \right] = \\ &= \frac{e^{\Sigma T_s}}{\Delta} \left[ \Delta \cosh{(\Delta T_s)} - \Sigma \sinh{(\Delta T_s)} \right] = \\ &= e^{K \Delta T_s} \left[ \cosh{(\Delta T_s)} - K \sinh{(\Delta T_s)} \right] = \\ &= e^{-K |\Delta| T_s} \left[ \cosh{(-|\Delta| T_s)} - K \sinh{(-|\Delta| T_s)} \right] \end{align} $$

And finally:

$$ 0.02 = e^{-K |\Delta| T_s} \left[ \cosh{(|\Delta| T_s)} + K \sinh{(|\Delta| T_s)} \right] \\ $$

Now that we have rewritten the expression in term of \$ |\Delta| T_s\$ and \$K\$ (instead of in terms of \$s_1\$ and \$s_2\$), we can numerically solve for \$ |\Delta| T_s\$, (by simply using Excel's solver) for any arbitrary given \$\zeta>1\$.

Example 1: a moderately overdamped system with \$\zeta = 1.1\$. Thus \$K = \frac{1.1}{1.1^2-1} \approx 2.4\$, and then solving numerically:

$$ T_s \approx \frac{3.172}{|\Delta|} = \frac{3.172}{\omega_0 \sqrt{1.1^2-1}} \approx \frac{6.922}{\omega_0} $$

Example 2: a heavily overdamped system with \$\zeta = 5\$. Thus \$K = \frac{5}{\sqrt{24}} \approx 1.0206\$, and then solving numerically:

$$ T_s \approx \frac{190.21}{|\Delta|} = \frac{190.21}{\omega_0 \sqrt{24}} \approx \frac{38.827}{\omega_0} $$


There is also an approximation for heavily overdamped (\$\zeta \gg 1\$) systems based on the dominant pole:

$$ v_{out}(t) \approx H_0 u(t) \left[ 1 - e^{s_1 t} \right] $$

If we define the settling time \$T_s\$ using the same "within 2% of final response" criteria, then:

$$ 0.02 \approx e^{s_1 T_s} $$

and:

$$ T_s \approx \frac{\ln(0.02)}{s_1} = \frac{-\ln(0.02)}{\omega_0 (\zeta-\sqrt{\zeta^2-1})} $$

We can compare this approximation with the exact results that we have derived before.

For \$\zeta = 5\$:

$$ T_s \approx \frac{38.725}{\omega_0} $$

An estimation error just about -0.25%. Quite good indeed.

For \$\zeta = 1.1\$:

$$ T_s \approx \frac{6.096}{\omega_0} $$

An estimation error of approx -12%. Not bad taking into account that \$\zeta = 1.1\$ is just marginally above the critically damped case!.


Bonus

We can write a generic settling time expression for \$\zeta>1\$ as follows

$$ T_s = \frac{\psi}{\omega_0} $$

where \$\psi\$ is a coefficient roughly proportional to the damping factor \$\zeta\$.

I've numerically calculated the value of \$\psi\$ for a range of \$1<\zeta<9\$ using the expression previously derived for settling within 2% of the final value,

$$ 0.02 = e^{-K |\Delta| T_s} \left[ \cosh{(|\Delta| T_s)} + K \sinh{(|\Delta| T_s)} \right] $$

Then I've calculated (for comparison purposes) 1) the dominant pole approximation, 2) a 3rd order polynomial regression on my numerically calculated dataset, and 3), 4) the relative error due to these two approximations.

Here is an Excel plot with the results:

settling time inverse proportionality constant phi